1 Greenwald R A, Baker K B, Hutchins R A, et al. An HF phased-array radar for studying small-scale structure in the high-latitude ionosphere. Radio Sci, 1985, 20: 63–79
2 Greenwald R A, Baker K B, Ruohoniemi J M, et al. Simultaneous conjugate observations of dynamic variations in high latitude dayside convection due to changes in IMF By. J Geophy Res, 1990, 95: 8057–8072
3 Greenwald R A, Baker K B, Dudeney J R, et al. DARN/SuperDARN: A global view of the dynamics of high-latitude convection. Space Sci Rev, 1995, 71: 761–796
4 Greenwald R A, Weiss W, Nielsen E, et al. STARE: A new radar auroral backscatter experiment in northern Scandinavia. Radio Sci, 1978, 12: 1021–1039
5 Nielsen E, Guttler W, Thomas E C, et al. SABRE–A new radar auroral backscatter experiment. Nature, 1983, 304: 712
6 Chisham G, Lester M, Milan S E, et al. A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions. Surv Geophys, 2007, 28: 33–109
DOI:
10.1007/s10712-007-9017-8
7 Chisham G, Freeman M P, Abel G A, et al. Remote sensing the spatial and temporal structure of magnetopause and magnetotail reconnection from the ionosphere. Rev Geophys, 2008, 46
DOI:
10.1029/2007RG000233
8 Lester M. SuperDARN: A network approach to geospace science in the 21st century. J Atmos Solar Terr Phys, 2008, 70: 2309–2323
DOI:
10.1016/j.jastp.2008.08.003
9 Ruohoniemi J M, Baker K B. Large-scale imaging of high-latitude convection with Super Dual auroral radar network HF radar observations. J Geophys Res, 1998, 103: 20797–20811
DOI:
10.1029/2006GL026256
10 Oksavik K, Greenwald R A, Ruohoniemi J M, et al. First observations of the temporal/spatial variation of sub-auroral polarization stream from the SuperDARN Wallops HF Radar. Geophys Res Lett, 2006, 33
DOI:
10.1029/2011JA016763
11 Grocott A, Milan S E, Baker J B H, et al. Dynamic sub-auroralionosphericelectric fields observed by the Falkland Islands radar during the course of a geomagnetic storm. J Geophys Res, 2011, 116
12 Robinson T R, Stocker A J, Bond G E, et al. O- and X-Mode heating effects observed simultaneously with the CUTLASS and EISCAT radars and low power HF diagnostics at Troms?. Ann Geophys, 1997, 15: 134–136
13 Robinson T R, Yeoman T K, Dhillon R S, et al. First observations of SPEAR-induced artificial backscatter from CUTLASS and the EISCAT Svalbard radars. Ann Geophys, 2006, 24: 291–309
14 Milan S E, Lester M. A classification of spectral populations observed in HF radar backscatter from the E region and lower F region auroral electrojets. Ann Geophys, 2001, 19: 189–204
DOI:
10.1029/2002GL015210
15 Yukimatu A S, Tsutsumi M. A new SuperDARN meteor wind measurement: Raw time series analysis methodand its application to mesopause region dynamics. Geophys Res Lett, 2002, 29
DOI:
10.1029/2007GL032164
16 Greenwald R A, Oksavik K, Barnes R, et al. First radar measurements of ionospheric electric fields at sub-second temporal resolution. Geophys Res Lett, 2008, 35
17 Pinnock M, Rodger A S, Dudeney J R, et al. High spatial and temporal observations of the ionospheric cusp. Ann Geophys, 1995, 13: 919–925
18 Provan G, Yeoman T K, Cowley S W H. The influence of the IMF Bycomponent on the location ofpulsed flows in the dayside ionosphere observed by an HF radar. Geophys Res Lett, 1999, 26: 521–524
19 Neudegg D A, Yeoman T K, Cowley S W H, et al. A flux transfer event observed at the magnetopause by the Equator-S spacecraft and in the ionosphere by the CUTLASS HF radar. Ann Geophys, 1999, 17: 707–711
20 Milan S E, Lester M, Cowley S W H, et al. Convection and auroral response to a southward turning of the IMF: Polar UVI, CUTLASS and IMAGE signatures of transient flux transfer at the magnetopause. J Geophys Res, 2000, 105: 15741–15756
21 Neudegg D A, Cowley S W H, Milan S E, et al. A survey of magnetopause FTEs and associated flow bursts in the polar ionosphere. Ann Geophys, 2000, 18: 416–435
22 Wild J A, Cowley S W H, Davies J A, et al. First simultaneous observations of flux transfer events at the high-latitude magnetopause by the Cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by the CUTLASS and EISCAT radars. Ann Geophys, 2001, 19: 1491–1508
23 Wild J A, Milan S E, Cowley S W H, et al. Coordinated interhemisphericSuperDARN radar observations of the ionospheric response to flux transfer events observed by the Cluster spacecraft at the high-latitude magnetopause. Ann Geophys, 2003, 21: 1807–1826
DOI:
10.1029/2010JA015526
24 Zhang Q H, Dunlop M W, Lockwood M, et al. Simultaneous observations of reconnection pulses at Cluster and their effects on the cusp aurora observed at the Chinese Yellow River Station. J Geophys Res, 2010, 115
25 Taylor J R, Cowley S W H, Yeoman T, et al. SuperDARN studies of ionospheric convection in response to a northward turning of the interplanetary magnetic field on 23 March 1995. Ann Geophys, 1998, 16: 549–565
26 Ruohoniemi J M, Greenwald R A. The response of high-latitude convection to a sudden southward IMF turning. Geophys Res Lett, 1998, 25: 2913–2916
27 Shepherd S G, Greenwald R A, Ruohoniemi J M. A possible explanation for rapid, large-scale ionospheric responses to southward turnings of the IMF. Geophys Res Lett, 1999, 26: 3197–3200
28 Nishitani N, Ogawa T, Sato N, et al. A study of the dusk convection cell’s response to an IMF southward turning. J Geophys Res, 2002, 107
DOI:
10.1029/2001JA900095
29 Lu G, Holzer T E, Lummerzheim D, et al. Ionospheric response to the interplanetary magnetic field southward turning: fast onset and slow reconfiguration. J Geophys Res, 2002
DOI:
10.1029/2001JA000324
30 Freeman M P. A unified model of the response of ionospheric convection to changes in the interplanetary magnetic field. J Geophys Res, 2003, 108
DOI:
10.1029/2002JA009385
31 Ruohoniemi J M, Greenwald R A. Observations of IMF and seasonal effects in high-latitude convection. Geophys Res Lett, 1995, 22: 1121–1124
32 Ruohoniemi J M, Greenwald R A. Dependencies of high-latitude plasma convection: consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns. J Geophys Res, 2005, 110
DOI:
10.1029/2004JA010815
33 Pettigrew E D, Shepherd S G, Ruohoniemi J M. Climatological patterns of high-latitude convection in the Northern and southern hemispheres: Dipole tilt dependencies and interhemispheric comparisons. J Geophys Res, 2010, 115
DOI:
10.1029/2009JA014956
34 Cousins E D P, Shepherd S G. A dynamical model of high-latitude convection derived from SuperDARN plasma drift measurements. J Geophys Res, 2010, 115
35 Cowley S W H, Lockwood M. Excitation and decay of solar wind-driven flows in the magnetosphere-ionosphere system. Ann Geophys, 1992, 10
36 Walker A D M, Pinnock M, Baker K B, et al. Strong flow bursts in the nightsideionosphere during extremely quiet solar wind conditions. Geophys Res Lett, 1998, 25: 881–884
DOI:
10.1029/2001JA000063
37 Walker A D M, Baker K B, Pinnock M, et al. Radar observations of magnetosphericactivity during extremely quiet solar wind conditions. J Geophys Res, 2002, 107
38 Senior C, Cerisier J C, Rich F J, et al. Strong sunward propagating flow bursts in the night sector during quiet solar wind conditions: SuperDARN and satellite observations. Ann Geophys, 2002, 20: 771–779
39 Grocott A, Cowley S W H, Sigwarth J B. Ionospheric flows and magnetic disturbance during extended intervals of northward but By-dominated IMF. Ann Geophys, 2003, 21: 509–538
40 Grocott A, Badman S V, Cowley S W H, et al. The influence of IMF Byon the nature of the nightside high-latitude ionospheric flow during intervals of positive IMF Bz. Ann Geophys, 2004, 22: 1755–1764
41 Grocott A, Yeoman T K, Milan S E, et al. Interhemispheric observations of the ionospheric signature of tail reconnection during IMF-northward non-substorm intervals. Ann Geophys, 2005, 23: 1763–1770
42 Baker J B H, Greenwald R A, Ruohoniemi J M, et al. Observations of ionospheric convection from the Wallops SuperDARN radar at mid-latitudes. J Geophys Res, 2007, 112
DOI:
10.1029/2006Ja011982
43 Foster J C, Burke WJ. SAPS: A new categorization for subauroral electric fields.
DOI:
10.1029/2002EO000289
44 Clausen L B N, Baker J B H, Ruohoniemi J M, et al. Large-scale observations of a subauroral polarization stream by midlatitude SuperDARN radars: Instantaneous longitudinal velocity variations. J Geophys Res, 2012, 117
DOI:
10.1029/2011JA017232
45 Kunduri B S R, Baker J B H, Ruohoniemi J M, et al. An examination of inter-hemispheric conjugacy in a subauroral polarization stream. J Geophys Res, 2012, 117
DOI:
10.1029/2012JA017784
46 Provan G, Lester M, Mende S B, et al. Statistical study of high-latitude plasma flow during magnetosphericsubstorms. Ann Geophys, 2004, 22: 3607–3624
47 Bristow W A, Jensen P. A superposed epoch study of SuperDARN convection observations during substorms. J Geophys Res, 2007, 112
DOI:
10.1029/2006JA012049
48 Grocott A, Wild J A, Milan S E, et al. Superposed epoch analysis of the ionospheric convection evolution during substorms: Onset latitude dependence. Ann Geophys, 2009, 27: 591–600
49 49 Grocott A, Milan S E, Yeoman T K, et al. Superposed epoch analysis of the ionospheric convection evolution during substorms: IMF By dependence. J Geophys Res, 2010, 115
DOI:
10.1029/2010JA015728
50 Yeoman T K, Davies J A, Wade N M, et al. Combined CUTLASS, EISCAT and ESR observations of ionospheric plasma flows at the onset of an isolated substorm. Ann Geophys, 2000, 18: 1073–1087
51 Grocott A, Lester M, Parkinson M L, et al. Towards a synthesis of substorm electrodynamics: HF radar and auroral observations. Ann Geophys, 2006, 24: 3365–3381
52 Liang J, Sofko G J, Frey H U. Postmidnight convection dynamics during substorm expansion phase. J Geophys Res, 2006, 111
DOI:
10.1029/2005JA011483
53 Baker K B, Dudeney J R, Greenwald R A, et al. HF radar signatures of the cusp and low-latitude boundary layer. J Geophys Res, 1995, 100: 7671–7695
54 Dudeney J R, Rodger A S, Freeman M P, et al. Imaging the nightsideionospheric response to IMF By changes. Geophys Res Lett, 1998, 25
55 Lester M, Milan S E, Besser V, et al. A case study of HF radar spectra and 630.
56 Chisham G, Freeman M P, Sotirelis T. A statistical comparison of SuperDARN spectral width boundaries and DMSP particle precipitation boundaries in the nightside ionosphere. Geophys Res Lett, 2004, 31
DOI:
10.1029/2003GL019074
57 Chisham G, Freeman M P, Sotirelis T, et al. A statistical comparison of SuperDARN spectral width boundaries and DMSP particle precipitation boundaries in the morning sector ionosphere. Ann Geophys, 2005, 2: 733–743
58 Chisham G, Freeman M P, Sotirelis T, et al. The accuracy of using the spectral width boundary measured in off-meridional SuperDARN HF radar beams as a proxy for the open-closed field line boundary. Ann Geophys, 2005, 23: 2599–2604
59 Chisham G, Freeman M P, Lam M M, et al. A statistical comparison of SuperDARN spectral width boundaries and DMSP particle precipitation boundaries in the afternoon sector ionosphere. Ann Geophys, 2005, 23: 3645–3654
60 Oksavik K, Barth V, Moen J, et al. On the entry and transit of high-density plasma across the polar cap. J Geophys Res, 2010, 115
DOI:
10.1029/2010JA015817
61 Milan S E, Lester M, Yeoman T K. Polar patch formation revisited, summer and winter variations in dayside plasma structuring. Ann Geophys, 2002, 20: 487–499
62 Zhang Q H, Zhang B C, Lockwood M, et al. Direct observations of the evolution of polar cap patches. Science, 2013, 339
DOI:
10.1126/science.1231487
63 Yeoman T K, Wrigh D M, Robinson T R, et al. High spatial and temporal resolution observations of an impulse-driven field line resonance in radar backscatter artificially generated with the Tromso heater. Ann Geophys, 1997, 15: 634–644
64 Yeoman T K, James M, Mager P N, et al. SuperDARN observations of high-m ULF waves with curved phase fronts and their interpretation in terms of transverse resonator theory. J Geophys Res, 2012, 117
65 Lester M, Chapman P J, Cowley S W H, et al. Stereo CUTLASS–A new capability for the SuperDARN radars. Ann Geophys, 2004, 22: 459–473
66 Ruohoniemi J M, Greenwald R A, Baker K B, et al. HF radar observations of Pc-5 field line resonances in the midnight early morning MLT sector. J Geophys Res, 1991, 96: 15697–15710
67 Ponomarenko P V, Menk F W, Waters C L. Visualiization of ULF waves in SuperDARN data. Geophys Res Lett, 2003, 30
DOI:
10.1029/2003GL017757
68 Rae I J, Fenrich F R, Lester M, et al. Solar wind modulation of cusp particle signatures and their associated ionospheric flows. J Geophys Res, 2004, 109
DOI:
10.1029/2003JA010188
69 Prikryl P, Greenwald R A, Sofko G J, et al. Solar-wind driven pulsed magnetic reconnection at the dayside magnetopause, Pc5 compressional oscillations and field line resonances. J Geophys Res, 1998, 103: 17307–17322
70 Prikryl P, Provan G, McWilliams K A, et al. Ionospheric cusp flows pulsed by solar wind Alfven waves. Ann Geophys, 2002, 20: 161–174
71 Samson J C, Greenwald R A, Ruohoniemi J M, et al. Goose Bay Radar observations of Earth-reflected atmospheric gravity waves in the high-latitude ionosphere. J Geophys Res, 1990, 95: 7693–7709
72 Bristow W A, Greenwald R A, Samson J C. Identification of high-latitude acoustic gravity wave sources using the Goose Bay HF radar. J Geophys Res, 1994, 99: 319–331
73 Stocker A J, Arnold N F, Jones T B. The synthesis of travelling ionospheric disturbance (TID) signatures in HF radar observations using ray tracing. Ann Geophys, 2000, 18: 56–64
74 Karhunen T J T, Arnold N F, Robinson T R, et al. Determination of the parameters of traveling ionospheric disturbances in the high-latitude ionosphere using CUTLASS coherent-scatter radars. J Atmos Solar Terr Phys, 2006, 68: 558–567
75 Williams P J S, Virdi T S, Lewis R V, et al. Worldwide Atmospheric Gravity- Wave Study in the European Sector 1985-1990. J Atmos Solar Terr Phys, 1993, 55: 683–696
76 Ogawa T, Nishitani N, Otsuka Y, et al. Medium-scale travelling ionospheric disturbances observed with the Hokkaiso SuperDARN radar, all-sky imager, and GPS network and their relation to concurrent sporadic E irregularities. J Geophys Res, 2009, 114
DOI:
10.109/2008JA013893
77 Grocott, A , Hosokawa K, Ishida T, et al. Characteristics of medium-scale travelling ionospheric disturbances observed near the Antarctic peninsular by HF radar. J Geophys Res, 2013
78 Karpachev A, Beloff N, Carozzi T D, et al. Detection of large scale TIDs associated with the dayside cusp using SuperDARN data. J Atmos Solar Terr Phys, 2010, 72: 653–661
79 Hayashi H, Nishitani N, Ogawa T, et al. Large-scale travelling ionospheric disturbance observed by SuperDARN Hokkaido HF radar and GPS networks on 15 December 2006. J Geophys Res, 2010, 115
DOI:
10.129/2009JA014297
80 Hall G E, MacDougall J W, Moorcroft , et al. SuperDARN radar observations of meteor echoes. J Geophys Res, 1997, 102: 14603–14614
81 Jenkins B, Jarvis M J, Forbes D M. Mesospheric wind observations derived from Super Dual Auroral Radar Network(SuperDARN) HF radar meteor echoes at Halley, Antarctica: Preliminary results. Radio Sci, 1998, 33: 957–965
82 Bristow WA, Yee J H, Zhu X, et al. J Geophys Res,1999, 104: 12715- 12721.
83 Jenkins B, Jarvis M J. Mesospheric winds derived from SuperDARN HF radar meteor echoes at Halley, Antarctica. Earth Planets Space, 1999, 51: 685–689
84 Tsutsumi M, Yukimatu A S, Holdsworth D, et al. Advanced SuperDARN meteor wind observations based on raw time series analysis technique. Radio Sci, 2009, 44
DOI:
10.1029/2008RS003994
85 Hibbens R E, Freeman M P, Milan S E, et al. Winds and tides in the mid-latitude Southern hemisphere upper mesosphere recorded with the Falkland islands SuperDARN radar. Ann Geophys, 2011, 29
DOI:
10.5194/angeo-29-1985-2011
86 Ogawa T, Nishitani N, Sato N, et al. Upper mesosphere summer echoes detected with the Antarctic Syowa HF radar. Geophys Res Lett, 2002, 29
DOI:
10.1029/2001GL014094
87 Rapp M, Lubken F J. Polar mesosphere summer echoes (PMSE): Review of observations and current understanding. Atmos Chem Phys, 2004, 4: 2601–2633
88 Ogawa T, Arnold N F, Kirkwood S, et al. Finland HF and Esrange MST radar observations of polar mesosphere summer echoes. Ann Geophys, 2003, 21: 1047–1055