The genus
RESEARCH-ARTICLE
Preliminary genome analysis of psychrotolerant marine bacterium sp. BSw20308 reveals its potential applications

Vol. 24, Issue 4, pp. 195-201 (2013) • DOI
Abstract
Basic Infomations
References
Attachments
Cited By
Abstract
Keywords
Author Address:
1. SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China;
2. College of Biological Engineering, Jimei University, Xiamen 350200, China
2. College of Biological Engineering, Jimei University, Xiamen 350200, China
1 Laurienzo P. Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs, 2010, 8(9): 2435–2465
2 Nguyen R T, Harvey H R. Protein and amino acid cycling during phytoplankton decomposition in oxic and anoxic waters. Org Geochem, 1997, 27(3-4): 115–128
3 Groudieva T, Kambourova M, Yusef H, et al. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles, 2004, 8(6): 475–488
4 Zeng Y X, Zou Y, Grebmeier J M, et al. Culture-independent and -dependent methods to investigate the diversity of planktonic bacteria in the northern Bering Sea. Polar Biol, 2012, 35(1): 117–129
5 Bowman J P. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar Drugs, 2007, 5(4): 220–241
6 Ivanova E P, Bakunina I Y, Nedashkovskaya O I, et al. Ecophysiological variabilities in ectohydrolytic enzyme activities of some Pseudoalteromonas species, P. citrea, P. issachenkonii, and P. nigrifaciens. Current Microbiol, 2003, 46(4): 6–10
7 Zeng Y X, Chen B. Isolation and characteristics of one marine psychrotrophic cellulase-generating bacterium Ar/w/b/75°/10/5 from Chukchi Sea, Arctic. Chinese J Polar Sci, 2002, 13(2): 157–168
8 Zeng Y X, Yu Y, Chen B, et al. Extracellular enzymatic activities of cold-adapted bacteria from polar oceans and effect of temperature and salinity on cell growth. Chinese J Polar Sci, 2004, 15(2): 118–128
9 Delcher A L, Bratke K A, Powers E C, et al. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics, 2007, 23(6): 673–679
10 Lukashin A V, Borodovsky M. GeneMark. hmm: New solutions for gene finding. Nucleic Acids Res, 1998, 26(4): 1107–1115
11 Guo F B, Ou H Y, Zhang C T. ZCURVE: a new system for recognizing protein-coding genes in bacterial and archaeal genome. Nucleic Acids Res, 2003, 31(6): 1780–1789
12 Ogata H, Goto S, Sato K, et al. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 1999, 27(1): 29–34
13 Tatusov R L, Fedorova N D, Jackson J D, et al. The COG database: an updated version includes eukaryotes. BMC Bioinfornatics, 2003, 4: 41
14 Lowe T M, Eddy S R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res, 1997, 25(5): 955–964
15 Lagesen K, Hallin P, Rødland E A, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res, 2007, 35(9): 3100–3108
16 Médigue C, Krin E, Pascal G, et al. Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res, 2005, 15(10): 1325–1335
17 Thomas T, Evans F F, Schleheck D, et al. Analysis of the Pseudoalteromonas tunicata genome reveals properties of a surface-associated life style in the marine environment. PLos One, 2008, 3: e3252
18 Zhao D L, Yu Z C, Li P Y, et al. Characterization of a cryptic plasmid pSM429 and its application for heterologous expression in psychrophilic Pseudoalteromonas. Microb Cell Fact, 2011, 10: 30
19 Rychel A L, Smith S E, Shimamoto H T, et al. Evolution and development of the chordates: collagen and pharyngeal cartilage. Mol Biol Evol, 2006, 23(3): 541–549
20 Swatschek D, Schatton W, Kellermann J, et al. Marine sponge collagen: isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur J Pharm Biopharm, 2002, 53(1): 107–113
21 Zhao G Y, Chen X L, Zhao H L, et al. Hydrolysis of insoluble collagen by deseasin MCP-01 from deep-sea Pseudoalteromonas sp. SM9913: collagen- binding ability of C-terminal polycystic kidney disease domain, and implication for its novel role in deep-sea sedimentary particulate organic nitrogen degradation. J Biol Chem, 2008, 283(52): 36100–36107
22 Oppermann-Sanio F B, Steinbüchel A. Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften, 2002, 89(1): 11–22
23 Lloyd-Jones G, Lau P C. Glutathione S-transferase-encoding gene as a potential probe for environmental bacterial isolates capable of degrading polycyclic aromatic hydrocarbons. Appl Environ Microbiol, 1997, 63(8): 3286–3290
24 Gunsch C K, Cheng Q, Kinney K A, et al. Identification of a homogentisate- 1,2-dioxygenase gene in the fungus Exophiala lecanii-corni: analysis and implications. Appl Microbiol Biotechnol, 2005, 68(3): 405–411
25 Brückmann M, Blasco R, Timmis K N, et al. Detoxification of protoanemonin by dienelactone hydrolase. J Bacteriol, 1998, 180(2): 400–402
26 Soda K, Kurihara T, Liu J Q, et al. Bacterial 2-haloacid dehalogenases: structures and catalytic properties. Pure Appl Chem, 1996, 68(11): 2097–2103
27 De Oliveira I M, Bonatto D, Pêga Henriques J A. Nitroreductases: enzymes with environmental, biotechnological and clinical importance // Mendez-Vilas A. Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz, Formatex: Formatex Research Center, 2010 : 1008–1019
28 Huchinson C R. Polyketide and non-ribosomal peptide synthases: falling together by coming apart. Proc Natl Acad Sci USA, 2003, 100(6): 3010–3012
29 Vaillancourt F H, Yeh E, Vosburg D A, et al. Nature’s inventory of halogenation catalysts: oxidative strategies predominate. Chem Rev, 2006, 106(8): 3364–3378
30 Schmartz P C, Wölfel K, Zerbe K, et al. Substituent effects on the phenol coupling reaction catalyzed by the vancomycin biosynthetic P450 enzyme OxyB. Angew Chem Int Ed Engl, 2012, 51(46): 11468–11472
31 Wu C Y, Tan Y, Gan M L, et al. Identification of elaiophylin derivatives from the marine-derived actinomycete Streptomyces sp. 7-145 using PCR-based screening. J Nat Prod, 2013, 76(11): 2153–2157
32 Wahl H P, Grisebach H. Biosynthesis of streptomycin dTDP-dihydrostreptose synthase from Streptomyces griseus and dTDP-4-keto-Lrhamnose 3,5-epimerase from S. griseus and Escherichia coli Y10. Biochim Biophys Acta, 1979, 568(1): 243–252
Friend Links
Related Journals
Related Links