Methane (CH4) is one of important greenhouse gases with chemical activity. The determination of isotopic compositions for CH4 emitted from the soils helps us to understand its production mechanisms. CH4 isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of CH4 have been reported from Antarctic tundra soils. In this paper, ornithogenic soil profiles were collected from four penguin colonies, and potential CH4 production rates and its 13C ratio (
RESEARCH-ARTICLE
Potential methane production rates and its carbon isotopic composition from ornithogenic tundra soils in coastal Antarctica

View: HTML | PDF (0 K) | ESM
Vol. 27, Issue 1, pp. 21-30 (2016) •
Abstract
Basic Infomations
References
Attachments
Cited By
Abstract
Keywords
Author Address:
1.Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
2.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
2.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
2.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
2.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
1 Sun L G, Zhu R B, Xie Z Q, et al. Monitoring CH concentrations on Fildes Peninsula in Antarctica. Prog Nat Sci, 2001, 11(9): 995-998 (in Chinese)
4
2 Wang Y S, Wang M X, Zheng X H, et al. Atmospheric CH concentration and change in Beijing. Chin Sci Bull, 1994, 39(14): 1306-1308 (in Chinese)
4
3 Etheridge D M, Pearman G I, Fraser P J. Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core. Tellus B, 1992, 44(4): 282-294 DOI:10.1034/j.1600-0889.1992.t01-3-00006.x
4 Chappellaz J, Barnola J M, Raynaud D, et al. Ice-core record of atmospheric methane over past 160,000 years. Nature, 1990, 345(6271): 127-131 DOI:10.1038/345127a0
6 Kaufman D S, Schneider D P, McKay N P, et al. Recent warming reverses long-term Arctic cooling. Science, 2009, 325(5945): 1236- 1239 DOI:10.1126/science.1173983
7 Tatur A, Myrcha A. Ornithogenic ecosystems in the maritime Antarctic—formation, development and disintegration//Beyer L, Bölter M. Geoecology of Antarctic ice-free coastal landscapes. Berlin Heidelberg: Springer, 2002, 154: 161-184
8 Sun L G, Zhu R B, Yin X B, et al. A geochemical method for the reconstruction of the occupation history of a penguin colony in the maritime Antarctic. Polar Biol, 2004, 27(11): 670-678 DOI:10.1007/s00300-004-0635-z
9 Cannone N, Wagner D, Hubberten H W, et al. Biotic and abiotic factors influencing soil properties across a latitudinal gradient in Victoria Land, Antarctica. Geoderma, 2008, 144(1-2): 50-65 DOI:10.1016/j.geoderma.2007.10.008
10 Ugolini F C. Antarctic soils and their ecology//Holdgate M W. Antarctic ecology, vol 2. London: Academic Press, 1970: 673-692
11 Michel R F M, Schaefer C E G R, Dias L E, et al. Ornithogenic Gelisols (Cryosols) from maritime Antarctica: Pedogenesis, vegetation and carbon studies. Soil Sci Soc Am J, 2006, 70(4): 1370-1376 DOI:10.2136/sssaj2005.0178
12 Schaefer C E G R, Simas F N B, Gilkes R J, et al. Micromorphology and microchemistry of selected Cryosols from maritime Antarctica. Geoderma, 2008, 144(1-2): 104-115 DOI:10.1016/j.geoderma.2007.10.018
13 Zhu R B, Sun J J, Liu Y S, et al. Potential ammonia emissions from penguin guano, ornithogenic soils and seal colony soils in coastal Antarctica: effects of freezing-thawing cycles and selected environmental variables. Antarct Sci, 2011, 23(1): 78-92 DOI:10.1017/S0954102010000623
14 Zhu R B, Liu Y S, Xu H, et al. Methane emissions from three sea animal colonies in the maritime Antarctic. Atmos Environ, 2008, 42(6): 1197-1205 DOI:10.1016/j.atmosenv.2007.10.035
16 Zhang G B, Ji Y, Ma J, et al. Intermittent irrigation changes production, oxidation, and emission of CH in paddy fields determined with stable carbon isotope technique. Soil Biol Biochem, 2012, 52: 108-116
17 Popp T J, Chanton J P, Whiting G J, et al. Methane stable isotope distribution at a Carex dominated fen in north central Alberta. Global Biogeochem Cycles, 1999, 13(4): 1063-1077 DOI:10.1029/1999GB900060
18 Conrad R, Klose M. Effect of potassium phosphate fertilization on production and emission of methane and its C-stable isotope composition in rice microcosms. Soil Biol Biochem, 2005, 37(11): 2099-2108
19 Bilek R S, Tyler S C, Sass R L, et al. Differences in CH oxidation and pathways of production between rice cultivars deduced from measurements of CH flux and δC of CH and CO2. Global Biogeochem Cycles, 1999, 13(4): 1029-1044
4
4
13
4 DOI:10.1029/1999GB900040
20 Stendel M, Romanovsky V E, Christensen J H, et al. Using dynamical downscaling to close the gap between global change scenarios and local permafrost dynamics. Global Planet Change, 2007, 56(1-2):203-214 DOI:10.1016/j.gloplacha.2006.07.014
21 Wuebbles D J, Hayhoe K. Atmospheric methane and global change. Earth-Sci Rev, 2002, 57(3-4): 177-210 DOI:10.1016/S0012-8252(01)00062-9
22 Wang R S, Huang G H, Liang Z B, et al. Advances in the research on sources and sinks of CH and CH oxidation (uptake) in soil. Chin J Appl Ecol, 2002, 13(12): 1707-1712 (in Chinese)
4
4
23 Stevens C M, Rust F E. The carbon isotopic composition of atmospheric methane. J Geophys Res, 1982, 87(C7): 4879-4882 DOI:10.1029/JC087iC07p04879
24 Liu Y S. Temporal and spatial variations of greenhouse gas fluxes and their production mechanism in Antarctic Tundra. Ph. D. thesis, Hefei: University of Science and Technology of China, 2011 (in Chinese)
25 Kato T, Hirota M, Tang Y H, et al. Spatial variability of CH and NO fluxes in alpine ecosystems on the Qinghai-Tibetan Plateau. Atmos Environ, 2011, 45(31): 5632-5639
4
26 Krüger M, Eller G, Conrad R, et al. Seasonal variation in pathways of CH production and in CH oxidation in rice fields determined by stable carbon isotopes and specific inhibitors. Global Change Biol, 2002, 8(3): 265-280
4
27 Tyler S C, Brailsford G W, Yagi K, et al. Seasonal variations in methane flux and δCH values for rice paddies in Japan and their implications. Global Biogeochem Cycles, 1994, 8(1): 1-12
13
4 DOI:10.1029/93GB03123
4
13
29 Lowe D C, Brenninkmeijer C A M, Brailsford G W, et al. Concentration and C records of atmospheric methane in New Zealand and Antarctica: evidence for changes in methane sources. J Geophys Res, 1994, 99(D8): 16913-16925
13 DOI:10.1029/94JD00908
30 Kelley C A, Dise N B, Martens C S. Temporal variations in the stable carbon isotopic composition of methane emitted from Minnesota peatlands. Global Biogeochem Cycles, 1992, 6(3): 263-269 DOI:10.1029/92GB01478
31 Bellisario L M, Bubier J L, Moore T R, et al. Controls on CH emissions from a northern peatland. Global Biogeochem Cycles, 1999, 13(1): 81-91
4 DOI:10.1029/1998GB900021
32 Trivelpiece W Z, Trivelpiece S G, Volkman N J. Ecological segregation of Adelie, gentoo and chinstrap penguins at King George Island, Antarctica. Ecology, 1987, 68(2): 351-361 DOI:10.2307/1939266
34 Zhu R B, Liu Y S, Ma E D, et al. Greenhouse gas emissions from penguin guanos and ornithogenic soils in coastal Antarctica: effects of freezing-thawing cycles. Atmos Environ, 2009, 43(14): 2336-2347 DOI:10.1016/j.atmosenv.2009.01.027
35 Tilsner J, Wrage N, Lauf J, et al. Emission of gaseous nitrogen oxides from an extensively managed grassland in NE Bavaria, Germany. II. Stable isotope natural abundance of NO. Biogeochemistry, 2003, 63(3): 249-267
2 DOI:10.1023/A:1023316315550
36 Sun L G, Zhu R B, Xie Z Q, et al. Emissions of nitrous oxide and methane from Antarctic tundra: role of penguin dropping deposition. Atmos Environ, 2002, 36(31): 4977-4982 DOI:10.1016/S1352-2310(02)00340-0
37 Cao Y C, Sun G Q, Han Y, et al. Determination of nitrogen, carbon and oxygen stable isotope ratios in NO, CH, and CO2 at natural abundance levels by mass spectrometer. Acta Pedolog Sin, 2008, 45(2): 249-258 (in Chinese)
2
4
39 Cai Z C, Xu H, Ma J. Methane and nitrous oxide emissions from ricebased ecosystems. Hefei: University of Science and Technology of China Press, 2009 (in Chinese)
40 Jones S K, Rees R M, Skiba U M, et al. Greenhouse gas emissions from a managed grassland. Global Planet Change, 2005, 47(2-4): 201-211 DOI:10.1016/j.gloplacha.2004.10.011
41 Keeney D R, Nelson D W. Nitrogen-inorganic forms//Page A L, Miller R H, Keeney DR. Methods of soil analysis. Madison, WI, USA: American Society of Agronomy, 1982: 643-698
42 Harris J M, Tibbles B J. Factors affecting bacterial productivity in soils on isolated inland nunataks in continental Antarctica. Microb Ecol, 1997, 33(2): 106-123 DOI:10.1007/s002489900013
43 Cocks M P, Newton I P, Stock W D. Bird effects on organic processes in soils from five microhabitats on a nunatak with and without breeding snow petrels in Dronning Maud Land, Antarctica. Polar Biol, 1998, 20(2): 112-120 DOI:10.1007/s003000050284
44 Qu X, He P J, Laurent M, et al. Effect of temperature on methanogenic pathway during household waste anaerobic digestion by stable carbon isotopic signature of CH. Environ Sci, 2008, 29(11): 3252-3257 (in Chinese)
4
45 Blair N E, Carter W D Jr. The carbon isotope biogeochemistry of acetate from a methanogenic marine sediment. Geochim Cosmochim Acta, 1992, 56(3): 1247-1258 DOI:10.1016/0016-7037(92)90060-V
46 Burke R A. Stable isotope ratios of microbial methane from shallow aquatic sediments. Abstracts of Papers of the American Chemical Society, 1988, 195: 108
47 Burke R A Jr, Martens C S, Sackett W M. Seasonal variations of D/H and C/12C ratios of microbial methane in surface sediments. Nature, 1988, 332(6167): 829-831
13 DOI:10.1038/332829a0
48 Barker J F, Fritz P. Carbon isotope fractionation during microbial methane oxidation. Nature, 1981, 293(5830): 289-291 DOI:10.1038/293289a0
49 Quay P D, King S L, Stutsman J, et al. Carbon isotopic composition of atmospheric CH: fossil and biomass burning source strengths. Global Biogeochem Cycles, 1991, 5(1): 25-47
4 DOI:10.1029/91GB00003
50 Sun L G, Xie Z Q, Zhao J L. Lacustrine deposit on Ardley Island: Penguin omithogenic sediment identification. Chin J Polar Res, 2000, 12(2): 105-112 (in Chinese)
51 Sherlock R R, Sommer S G, Khan R Z, et al. Ammonia, methane and nitrous oxide emission from pig slurry applied to a pasture in New Zealand. J Environ Qual, 2002, 31(5): 1491-1501 DOI:10.2134/jeq2002.1491
52 Holter P. Methane emissions from Danish cattle dung pats in the field. Soil Biol Biochem, 1997, 29(1): 31-37 DOI:10.1016/S0038-0717(96)00267-2
53 Simas F N B, Schaefer C E G R, Melo V F, et al. Ornithogenic Cryosols from maritime Antarctica: phosphatization as a soil forming process. Geoderma, 2007, 138(3-4): 191-203 DOI:10.1016/j.geoderma.2006.11.011
55 Merino A P, Pérez-Batallón, Macías F. Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe. Soil Biol Biochem, 2004, 36(6): 917-925 DOI:10.1016/j.soilbio.2004.02.006
56 Zhu R B, Liu Y S, Xu H, et al. Marine animals significantly increase tundra NO and CH emissions in maritime Antarctica. J Geophys Res, 2013, 118(4): 1773-1792
2
4 DOI:10.1002/2013JG002398
57 Knox G A. The biology of the southern ocean. New York: Cambridge University Press, 1994
Friend Links
Related Journals
Related Links