Vol.31, No.03. 2020
Table of Contents
ISSN:1674-9928
CN:31-2050/P
ARTICLE | Oceanography/Sea Ice
Laboratory experimental study of water drag force exerted on ridge keel

Vol. 31, Issue 1, pp. 36-42 (2020) • DOI
Abstract
Basic Infomations
References
Attachments
Cited By
Abstract
With the diminishing Arctic sea ice, the dynamic energy-exchange process between sea ice and ocean gains in importance. Concerning how the ice bottom topography affects the drift of sea ice, it is unclear how the ridge–keel-drag force exerted by seawater changes the momentum balance of sea ice. We thus conducted laboratory experiments to investigate how the local drag coefficient of the ridge keel depends on keel shape and on the relative velocity of ice with respect to seawater. A dimensional analysis is used to obtain the relationship between the local drag coefficient Cr, the Reynolds number Re, the dimensionless keel depth h0, and the keel slope angle φ. The results indicate that the local drag coefficient Cr is only relevant to Re when Re < 4000 and the flow is in the laminar regime. With increasing Re, Cr depends on h0 and φ, which are independent variables, as the flow transitions to the turbulent regime. The parameterization formulas for Cr are also provided.
Author Address:
State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
Andreas E L, Claffey K J. 1995. Air-ice drag coefficients in the western Weddell Sea: 1. Values deduced from profile measurements. J Geophys Res-Oceans, 100(C3): 4821-4831, doi: 10.1029/94jc02015.
Arya S P S. 1975. A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice. J Geophys Res, 80(24): 3447-3454, doi: 10.1029/jc080i024p03447.
Flocco D, Feltham D L, Schroeder D, et al. 2017. Improved ice-ocean form drag parameterization in the CICE Model//AGU Fall Meeting, abstract #C21B-1117.
Granskog M, Assmy P, Gerland S, et al. 2016. Arctic research on thin ice: Consequences of Arctic sea ice loss. Eos Trans. AGU, 97(5): 22-26, doi: 10.1029/2016eo044097.
Hunkins K. 1975. The oceanic boundary layer and stress beneath a drifting ice floe. J Geophys Res, 80(24): 3425-3433, doi: 10.1029/jc080i 024p03425.
Krumpen T, Belter H J, Boetius A, et al. 2019. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter. Sci Rep, 9(1): 5459, doi: 10.1038/s41598-019- 41456-y.
Lindsay R, Schweiger A. 2015. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere, 9(1): 269-283, doi: 10.5194/tc-9-269-2015.
Lu P, Leppäranta M, Cheng B, et al. 2016. Influence of melt-pond depth and ice thickness on Arctic sea-ice albedo and light transmittance. Cold Reg Sci Technol, 124: 1-10, doi: 10.1016/j.coldregions.2015. 12.010.
Lu P, Li Z, Cheng B, et al. 2011. A parameterization of the ice-ocean drag coefficient. J Geophys Res-Oceans, 116(C07019): 1-14, doi: 10.1029/2010JC006878.
Lüpkes C, Gryanik V M, Hartmann J, et al. 2012. A parametrization, based on sea ice morphology, of the neutral atmospheric drag coefficients for weather prediction and climate models. J Geophys Res-Atmos, 117(D13112): 1-18, doi: 10.1029/2012JD017630.
Martin T, Tsamados M, Schroeder D, et al. 2016. The impact of variable sea ice roughness on changes in Arctic Ocean surface stress: A model study. J Geophys Res-Oceans, 121(3): 1931-1952, doi: 10.1002/ 2015jc011186.
Martinson D G, Wamser C. 1990. Ice drift and momentum exchange in winter Antarctic pack ice. J Geophys Res-Oceans, 95(C2): 1741-1755, doi: 10.1029/jc095ic02p01741.
McPhee M G. 2002. Turbulent stress at the ice/ocean interface and bottom surface hydraulic roughness during the SHEBA drift. J Geophys Res-Oceans, 107(C10): 8037, doi: 10.1029/2000jc000633.
Mysak L A. 2001. Patterns of Arctic circulation. Science, 293(5533): 1269-1270, doi: 10.1126/science.1064217.
Notz D, Stroeve J. 2016. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 354(6313): 747-750, doi: 10.1126/science.aag2345.
Petty A A, Tsamados M C, Kurtz N T. 2017. Atmospheric form drag coefficients over Arctic sea ice using remotely sensed ice topography data, spring 2009-2015. J Geophys Res-Earth Surf, 122(8): 1472-1490, doi: 10.1002/2017jf004209.
Pite H D, Topham D R, van Hardenberg B J. 1995. Laboratory measurements of the drag force on a family of two-dimensional ice keel models in a two-layer flow. J Phys Oceanogr, 25(12): 3008-3031, doi: 10.1175/1520-0485(1995)025<3008:lmotdf>2.0.co;2.
Schlichting H. 1960. Boundary layer theory. New York: McGraw-Hill.
Serreze M C, Holland M M, Stroeve J. 2007. Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315(5818): 1533-1536, doi: 10.1126/science.1139426.
Shirasawa K, Grant Ingram R. 1997. Currents and turbulent fluxes under the first-year sea ice in Resolute Passage, Northwest Territories, Canada. J Mar Syst, 11(1-2): 21-32, doi: 10.1016/S0924-7963 (96)00024-3.
Spreen G, Kwok R, Menemenlis D. 2011. Trends in Arctic sea ice drift and role of wind forcing: 1992–2009. Geophys Res Lett, 38(L19501): 1-6, doi: 10.1029/2011GL048970.
Zhao J P, Barber D, Zhang S G, et al. 2018. Record low sea-ice concentration in the central Arctic during summer 2010. Adv Atmos Sci, 35(1): 106-115, doi: 10.1007/s00376-017-7066-6.
Friend Links
Related Journals
Related Links