Bjerga G E K, Williamson A K. 2015. Cold shock induction of recombinant Arctic environmental genes. BMC Biotechnology, 15: 78. doi: 10.1186/s12896- 015-0185-1.
Budyak I L, Zhuravleva A, Gierasch L M. 2013. The role of aromatic– aromatic interactions in strand–strand stabilization of β-sheets. J Mol Biol, 425(18): 3522-3535, doi: 10.1016/j.jmb.2013.06.030.
Boo S Y, Wong C M V L, Rodrigues K F, et al. 2013. Thermal stress responses in Antarctic yeast, Glaciozyma antarctica PI12, characterized by real-time quantitative PCR. Polar Biol, 36(3): 381-389, doi: 10.1007/s00300-0121268-2.
Chakrabarti P, Bhattacharyya R. 2007. Geometry of non-bonded interactions involving planar groups in proteins. Prog Biophys Mol Biol, 95(1-3): 83-137, doi: 10.1016/j.pbiomolbio.2007.03.016.
Czapski T R, Trun N. 2014. Expression of csp genes in E. coli K-12 in defined rich and defined minimal media during normal growth, and after cold-shock. Gene, 547(1): 91-97, doi: 10.1016/j.gene.2014. 06.033.
D’Amico S, Collins T, Marx J C, et al. 2006. Psychrophilic microorganisms: challenges for life. EMBO Rep, 7(4): 385-389.
Delbrück H, Mueller U, Perl D, et al. 2001. Crystal structures of mutant forms of the Bacillus caldolyticus cold shock protein differing in thermal stability. J Mol Biol, 313(2): 359-369, doi: 10.1006/jmbi. 2001.5051.
Eisenberg D, Lüthy R, Bowie J U. 1997. Verify3D: Assessment of protein models with three-Dimensional profiles. Methods Enzymol, 277: 396-404, doi: 10.1016/S0076-6879(97)77022-8.
Firdaus-Raih M, Hashim N H F, Bharudin I, et al. 2018. The Glaciozyma antarctica genome reveals an array of systems that provide sustained responses towards temperature variations in a persistently cold habitat. PloS One, 13(1): e0189947.
Gianese G, Argos P, Pascarella S. 2001. Structural adaptation of enzymes to low temperatures. Protein Eng Del Sel, 14(3):141-148, doi:10.1093/protein/14.3.141.
Gottesman S. 2018. Chilled in translation: adapting to bacterial climate change. Mol Cell, 70(2): 193-194, doi: 10.1016/j.molcel.2018.04. 003.
Graumann P, Marahiel M A. 1996. Some like it cold: response of microorganisms to cold shock. Arch Microbiol, 166(5): 293-300.
Hashim N H F, Bharudin I, Nguong D L S, et al. 2013. Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica PI12. Extremophiles, 17(1): 63-73.
Jin B, Jeong K W, Kim Y. 2014. Structure and flexibility of the thermophilic cold-shock protein of Thermus aquaticus. Biochem Biophys Res Commun, 451(3): 402-407.
Jones P G, Inouye M. 1994. The cold-shock responsea hot topic. Mol Microbiol, 11(5): 811-818.
Jung Y H, Yi J Y, Jung H J, et al. 2010. Overexpression of cold shock protein A of Psychromonas arctica KOPRI 22215 confers cold-resistance. Protein J, 29(2): 136-142, doi: 10.1007/s10930- 010-9233-9.
Laskowski R A, MacArthur M W, Moss D S, et al. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst, 26(2): 283-291, doi: 10.1107/ S0021889892009944.
Lindquist J A, Mertens P R. 2018. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Commun Signal, 16(1): 63, doi: 10.1186/s12964-018-0274-6
Manival X, Ghisolfi-Nieto L, Joseph G, et al. 2001. RNA-binding strategies common to cold-shock domain- and RNA recognition motif-containing proteins. Nucleic Acids Res, 29(11): 2223-2233, doi: 10.1093/nar/29.11.2223.
Margesin R, Neuner G, Storey K B. 2007. Cold-loving microbes, plants, and animals fundamental and applied aspects. Naturwissenschaften, 94(2): 77-99.
Melo F, Devos D, Depiereux E, et al. 1997. ANOLEA: a www server to assess protein structures. Proc Int Conf Intell Syst Mol Biol, 5: 187-190, doi: 10.1093/nar/gkh440.
Michaux C, Martini C, Shioya K, et al. 2012. CspR, a cold shock RNA-binding protein involved in the long-term survival and the virulence of Enterococcus faecalis. J Bacteriol, 194: 6900-6908, doi: 10.1128/JB.01673-12.
Michetti D, Brandsdal B O, Bon D, et al. 2017. A comparative study of cold- and warm-adapted Endonucleases A using sequence analyses and molecular dynamics simulations. PLoS One, 12(2): e0169586, doi: 10.1371/journal.pone.0169586.
Motono C, Gromiha M M, Kumar S. 2008. Thermodynamic and kinetic determinants of Thermotoga maritima cold shock protein stability: a structural and dynamic analysis. Proteins, 71(2): 655-669, doi: 10.1002/prot.21729
Nakagawa Y, Sakumoto N, Kaneko Y, et al. 2002. Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 291(3): 707-713.
Panadero J, Pallotti C, Rodríguez-Vargas S, et al. 2006. A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J Biol Chem, 281(8): 4638-4645.
Perl D, Mueller U, Heinemann U, et al. 2000. Two exposed amino acid residues confer thermostability on a cold shock protein. Nat Struct Mol Biol, 7(5): 380-383, doi: 10.1038/75151.
Pettersen E F, Goddard T D, Huang C C, et al. 2004. UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem, 25(13): 1605-1612, doi: 10.1002/jcc.20084.
Phadtare S. 2004. Recent developments in bacterial cold-shock response. Curr Issues Mol Biol, 6(2): 125-136.
Phadtare S, Alsina J, Inouye M. 1999. Cold-shock response and cold-shock proteins. Curr Opin Microbiol, 2(2): 175-180.
Phadtare S, Severinov K. 2010. RNA remodeling and gene regulation by cold shock proteins. RNA Biol, 7: 788-795, doi: 10.4161/rna.7.6. 13482.
Rogers A D, Johnston N M, Murphy E J, et al. 2012. Antarctic ecosystems: an extreme environment in a changing world. The Royal Society. John Wiley & Sons.
Russell N J. 1990. Cold adaptation of microorganisms. Phil Trans R Soc Lond B Biol Sci, 326(1237): 595-611.
Sælensminde G, Halskau Ø Jr, Jonassen I. 2009. Amino acid contacts in proteins adapted to different temperatures: hydrophobic interactions and surface charges play a key role. Extremophiles, 13: 11, doi: 10.1007/s00792-008-0192-4
Schade B, Jansen G, Whiteway M, et al. 2004. Cold adaptation in budding yeast. Mol Biol Cell, 15(12): 5492-5502.
Schärer K, Stephan R, Tasara T. 2013. Cold shock proteins contribute to the regulation of listeriolysin O production in Listeria monocytogenes. Foodborne Pathog Dis, 10(12): 1023-1029, doi: 10.1089/fpd.2013.1562.
Su J G, Han X M, Zhao S X, et al. 2016. Impacts of the charged residues mutation S48E/N62H on the thermostability and unfolding behavior of cold shock protein: insights from molecular dynamics simulation with Gō model. J Mol Model, 22(4): 91, doi: 10.1007/s00894-016- 2958-4.
Vasina J A, Baneyx F. 1996. Recombinant protein expression at low temperatures under the transcriptional control of the major Escherichia coli cold shock promoter cspA. Appl Environ Microbiol, 62(4): 1444-1447, doi: 10.1128/aem.62.4.1444-1447.1996.
Verghese J, Abrams J, Wang Y, et al. 2012. Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev, 76(2): 115-158.
Vigh L, Maresca B, Harwood J L. 1998. Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem Sci, 23(10): 369-374.
Waters M L. 2002. Aromatic interactions in model systems. Curr Opin Chem Biol, 6(6): 736-741.
Wouters J A, Rombouts F M, Kuipers O P, et al. 2000. The role of cold-shock proteins in low-temperature adaptation of food-related bacteria. Syst Appl Microbiol, 23(2): 165-173, doi: 10.1016/S0723- 2020(00)80001-6.
Yang C, Wang L, Siva V S, et al. 2012. A novel cold-regulated cold shock domain containing protein from scallop Chlamys farreri with nucleic acid-binding activity. PLoS One, 7(2): e32012, doi: 10.1371/journal. pone.0032012.
Yusof N A, Hashim N H F, Beddoe T, et al. 2016. Thermotolerance and molecular chaperone function of an SGT1-like protein from the psychrophilic yeast, Glaciozyma antarctica. Cell Stress Chaperones, 21(4): 707-715.
Zanphorlin L M, de Giuseppe P O, Honorato R V, et al. 2016. Oligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7. Sci Rep, 6, 23776, doi: 10.1038/srep23776.