Ackermann I J, Hass H, Memmesheimer M, et al. 1998. Modal aerosol dynamics model for Europe: development and first applications. Atmos Environ, 32(17): 2981-2999, doi: 10.1016/s1352-2310(98) 00006-5.
Barth M C, Rasch P J, Kiehl J T, et al. 2000. Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry. J Geophys Res, 105(D1): 1387-1415, doi: 10.1029/1999jd900773.
Bauer S E, Menon S, Koch D, et al. 2010. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects. Atmos Chem Phys, 10(15): 7439-7456, doi: 10.5194/acp- 10-7439-2010.
Bellouin N, Rae J, Jones A, et al. 2011. Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate. J Geophys Res, 116(D20): D20206, doi: 10.1029/2011jd016074.
Bian H, Chin M, Rodriguez J M, et al. 2009. Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity. Atmos Chem Phys, 9(7): 2375-2386, doi: 10.5194/acp-9-2375-2009.
Blanchard-Wrigglesworth E, Farrell S L, Newman T, et al. 2015. Snow cover on Arctic sea ice in observations and an Earth System Model. Geophys Res Lett, 42(23): 10342-10348, doi: 10.1002/2015gl066049.
Bond T C, Doherty S J, Fahey D W, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J Geophys Res Atmos, 118(11): 5380-5552, doi: 10.1002/jgrd.50171.
Chin M, Diehl T, Dubovik O, et al. 2009. Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements. Ann Geophys, 27(9): 3439-3464, doi: 10.5194/angeo-27-3439-2009.
Doherty S J, Grenfell T C, ForsstrÖm S, et al. 2013. Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow. J Geophys Res Atmos, 118: 5553-5569, doi: 10.1002/jgrd.50235.
Doherty S J, Warren S G, Grenfell T C, et al. 2010. Light-absorbing impurities in Arctic snow. Atmos Chem Phys, 10(8): 11647-11680, doi: 10.5194/acp-10-11647-2010.
Dou T, Du Z, Li S, et al. 2019. Brief communication: An alternative method for estimating the scavenging efficiency of black carbon by meltwater over sea ice. The Cryosphere Discussion, 13(12): 3309-3316, doi: 10.5194/tc-2019-147.
Dou T, Xiao C. 2013. Measurements of physical characteristics of summer snow cover on sea ice during the Third Chinese Arctic Expedition. Sciences in Cold and Arid Regions, 5(3): 309-315, doi: 10.3724/SP.J.1226.2013.00309.
Dou T, Xiao C. 2016. An overview of black carbon deposition and its radiative forcing over the Arctic. Advances in Climate Change Research, 7(3): 115-122.
Dou T, Xiao C, Du Z, et al. 2017. Sources, evolution and impacts of EC and OC in snow on sea ice: a measurement study in Barrow, Alaska. Sci Bull, 62(22): 1547-1554, doi:10.1016/j.scib.2017.10.014.
Dou T, Xiao C, Shindell D T, et al. 2012. The distribution of snow black carbon observed in the Arctic and compared to the GISS-PUCCINI model. Atmos Chem Phys, 12(17): 7995-8007, doi: 10.5194/acp-12- 7995-2012.
Flanner M G, Zender C S, Hess P G, et al. 2009. Springtime warming and reduced snow cover from carbonaceous particles. Atmos Chem Phys, 9: 2481-2497.
Flanner M G, Zender C S, Randerson J T, et al. 2007. Present-day climate forcing and response from black carbon in snow. J Geophys Res, 112: D11202, doi: 10.1029/2006jd008003.
Forsström S, Strom J, Pedersen C A, et al. 2009. Elemental carbon distribution in Svalbard snow. J Geophys Res, 114: D19112, doi: 10.1029/2008JD011480.
Gilardoni S, Vignati E, Wilson J. 2011. Using measurements for evaluation of black carbon modeling. Atmos Chem Phys, 11: 439-455, doi: 10.5194/acp-11-439-2011.
Glassmeier F, Possner A, Vogel B, et al. 2017. A comparison of two chemistry and aerosol schemes on the regional scale and the resulting impact on radiative properties and liquid and ice-phase aerosol–cloud interactions. Atmos Chem Phys, 17: 8651-8680, doi: 10.5194/acp-17- 8651-2017.
Goldenson N, Doherty S J, Bitz C M, et al. 2012. Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM. Atmos Chem Phys, 12: 7903-7920, doi: 10.5194/acp-12-7903-2012.
Grenfell T, Light B, Sturm M. 2002. Spatial distribution and radiative effects of soot in the snow and sea ice during the SHEBA experiment. J Geophys Res, 107(C10): SHE 7-1-SHE 7-7, doi: 10.1029/2000JC000414.Grini A, Myhre G, Zender C S, et al. 2005. Model simulations of dust sources and transport in the global atmosphere: Effects of soil erodibility and wind speed variability. J Geophys Res, 110(2): 1-14, doi: 10.1029/2004JD005037.
Hansen J, Nazarenko L. 2004. Soot climate forcing via snow and ice albedos. Proc Natl Acad Sci, 101(2): 423-428, doi: 10.1073/pnas. 2237157100.
Holland M, Bailey D A, Briegleb B P, et al. 2012. Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. J Clim, 25(5): 1413-1430, doi: 10.1175/ JCLI-D-11-00078.1.
Hunke E C, Lipscomb W H, Turner A K. 2011. Sea-ice models for climate study: retrospective and new directions. J Glaciol, 56(200): 1162- 1172.
Iversen T, Seland Ø. 2002. A scheme for process-tagged SO4 and BC aerosols in NCAR CCM3: Validation and sensitivity to cloud processes. J Geophys Res, 107(D24): AAC 4-1-AAC 4-30, doi: 10.1029/2001JD000885.
Jacobi H-W, Obleitner F, Costa S D, et al. 2019. Deposition of ionic species and black carbon to the Arctic snowpack: combining snow pit observations with modeling. Atmos Chem Phys, 19(15): 10361-10377, doi: 10.5194/acp-19-10361-2019.
Jiao C, Flanner M G, Balkanski Y, et al. 2014. An AeroCom assessment of black carbon in Arctic snow and sea ice. Atmos Chem Phys, 14(5): 2399-2417, doi: 10.5194/acpd-13-26217-2013.
Kinne S, Schulz M, Textor C, et al. 2006. An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmos Chem Phys, 6: 1815-1834, doi: 10.5194/acp-6-1815-2006.
Kirkevåg A, Iversen T, Seland Ø, et al. 2013. Aerosol–climate interactions in the Norwegian Earth System Model–NorESM1-M. Geosci Model Dev, 6: 207-244, doi: 10.5194/gmd-6-207-2013.
Koch D, Bond T C, Streets D, et al. 2007. Global impacts of aerosols from particular source regions and sectors. J Geophys Res, 112: D02205, doi: 10.1029/2005JD007024.
Koch D, Schmidt G A, Field C, 2006. Sulfur, sea salt and radionuclide aerosols in GISS ModelE. J Geophys Res, 111: D06206, doi: 10.1029/2004JD005550.
Koch D, Schulz M, Kinne S, et al. 2009. Evaluation of black carbon estimations in global aerosol models. Atmos Chem Phys, 9: 9001-9026.
Krol M, Houweling S, Bregman B, et al. 2005. The two-way nested global chemistry-transport zoom model TM5: algorithm and applications. Atmos Chem Phys, 5: 417-432, doi: 10.5194/acp-5-417-2005.
Liu X, Easter R C, Ghan S J, et al. 2012. Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5. Geosci Model Dev, 5: 709-739, doi: 10.5194/gmd-5-709-2012.
Liu X, Penner J E. 2002. Effect of Mount Pinatubo H2SO4/H2O aerosol on ice nucleation in the upper troposphere using a global chemistry and transport model. J Geophys Res Atmos, 107: AAC 2-1-AAC 2-18, doi: 10.1029/2001JD000455.
Ma P L, Rasch P J, Fast J D, et al. 2014. Assessing the CAM5 physics suite in the WRF-Chem model: implementation, resolution sensitivity, and a first evaluation for a regional case study. Geosci Model Dev, 7(3): 755-778. doi: 10.5194/gmd-7-755-2014.
Mann G W, Carslaw K S, Reddington C L, et al. 2014. Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity. Atmos Chem Phys, 14: 4679-4713, doi: 10.5194/acp-14-4679-2014.
McConnell J R, Edwards R, Kok G L, et al. 2007. 20th-Century industrial black carbon emissions altered Arctic climate forcing. Science, 317: 1381-1384, doi: 10.1126/science.1144856.
Myhre G, Berglen T F, Johnsrud M, et al. 2009. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation. Atmos Chem Phys, 9: 1365-1392, doi: 10.5194/acp-9-1365-2009.
Myhre G, Samset B H, Schulz M, et al. 2013. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos Chem Phys, 13: 1853-1877, doi: 10.5194/acp-13-1853-2013.
Perovich D K, Grenfell T C, Light B, et al. 2009. Transpolar observations of the morphological properties of Arctic sea ice. J Geophys Res, 114: C00A04, doi: 10.1029/2008JC004892.
Pitari G, Iachetti D, Mancini E, et al. 2008. Radiative forcing from particle emissions by future supersonic aircraft. Atmos Chem Phys, 8(14): 4069-4084, doi: 10.5194/acp-8-4069-2008.
Quinn P K, Stohl A, Arneth A, et al. 2011. The impact of black carbon on Arctic climate. Arctic Monitoring and Assessment Programme (AMAP), Oslo, 72.
Reddy M S, Boucher O A. 2004. A study of the global cycle of carbonaceous aerosols in the LMDZT general circulation model. J Geophys Res Atmos, 109(D14): D14202, doi: 10.1029/2003JD004 048.
Samset B H, Myhre G, Schulz M, et al. 2013. Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmos Chem Phys, 13(5): 2423-2434, doi: 10.5194/acp-13-2423-2013.
Sand M, Samset B H, Balkanski Y, et al. 2017. Aerosols at the poles: an AeroCom Phase II multi-model evaluation. Atmos Chem Phys, 17(19): 1-35, doi: 10.5194/acp-2016-1120.
Schulz M, Chin M, Kinne S. 2009. The Aerosol Model Comparison Project, AeroCom, Phase II: Clearing Up Diversity, IGAC Newsletter, Issue No 41, May 2019.
Seland Ø, Iversen T, Kirkevåg A, et al. 2008. Aerosol climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings. Tellus A, 60: 459-491, doi: 10.1111/j.1600-0870. 2008.00318.x.
Sinha P R, Kondo Y, Koike M, et al. 2017. Evaluation of ground-based black carbon measurements by filter-based photometers at two Arctic sites. J Geophys Res Atmos, 122(6): 3544-3572, doi: 10.1002/ 2016jd025843.
Sinha P R, Kondo Y, Goto-Azuma K, et al. 2018. Seasonal progression of the deposition of black carbon by snowfall at Ny-Ålesund, Spitsbergen. J Geophys Res Atmos, 123(2): 997-1016, doi: 10.1002/2017jd028027.
Spracklen D V, Carslaw K S, Pöschl U, et al. 2011. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol. Atmos Chem Phys, 11(17): 9067-9087, doi: 10.5194/acp-11-9067- 2011.
Stier P, Feichter J, Kinne S, et al. 2005. The aerosol-climate model ECHAM5-HAM. Atmos Chem Phys, 5(4): 1125-1156, doi: 10.5194/ acp-5-1125-2005.
Szopa S, Balkanski Y, Schulz M, et al. 2013. Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100. Clim Dyn, 40(9-10): 2223-2250, doi: 10.1007/s00382-012-1408-y.
Takemura T, Egashira M, Matsuzawa K, et al. 2009. A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum. Atmos Chem Phys, 9(9): 3061-3073, doi: 10.5194/acp-9-3061-2009.
Vignati E, Karl M, Krol M, et al. 2010. Sources of uncertainties in modelling black carbon at the global scale. Atmos Chem Phys, 10(6): 2595-2611, doi: 10.5194/acp-10-2595-2010.
Wang Q, Jacob D J, Fisher J A, et al. 2011. Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing. Atmos Chem Phys, 11(23): 12453-12473, doi: 10.5194/acp-11-12453-2011.
Wiedinmyer C, Akagi S K, Yokelson R J, et al. 2011. The Fire Inventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci Model Dev, 4(3): 625-641, doi: 10.5194/gmd-4-625-2011.
Yun Y, Penner J E. 2012. Global model comparison of heterogeneous ice nucleation parameterizations in mixed phase clouds. J Geophys Res Atmos, 117: D07203, doi: 10.1029/2011JD016506.
Zhou C, Penner J E, Flanner M G, et al. 2012. Transport of black carbon to polar regions: Sensitivity and forcing by black carbon. Geophys Res Lett, 39(22): L22804, doi: 10.1029/2012gl053388.
Zhang K, O’Donnell D, Kazil J, et al. 2012. The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations. Atmos Chem Phys, 12(19): 8911-8949, doi: 10.5194/acp-12-8911-2012.