Al-Naji A, Perera A G, Mohammed S L, et al. 2019. Life signs detector using a drone in disaster zones. Remote Sens, 11(20): 2441, doi: 10.3390/rs11202441.
Bhardwaj A, Sam L, Akanksha, et al. 2016. UAVs as remote sensing platform in glaciology: present applications and future prospects. Remote Sens Environ, 175: 196-204, doi: 10.1016/j.rse.2015.12.029.
Bliakharskii D P, Florinsky I V, Skrypitsyna T N. 2019. Modelling glacier topography in Antarctica using unmanned aerial survey: assessment of opportunities. Int J Remote Sens, 40(7): 2517-2541, doi: 10.1080/ 01431161.2019.1584926.
Boghosian A L, Pratt M J, Becker M K, et al. 2019. Inside the ice shelf: using augmented reality to visualise 3D lidar and radar data of Antarctica. Photogramm Rec, 34(168): 346-364, doi: 10.1111/phor. 12298.
Cassano J J, Seefeldt M W, Palo S, et al. 2016. Observations of the atmosphere and surface state over Terra Nova Bay, Antarctica, using unmanned aerial systems. Earth Syst Sci Data, 8(1): 115-126, doi: 10.5194/essd-8-115-2016.
Chen L Q, Liu X H, Bian L G, et al. 2017. Overview of China’s Antarctic research progress 1984–2016. Adv Polar Sci, 28(3): 151-160, doi: 10.13679/j.advps.2017.3.00151.
COMNAP UAS Working Group. 2016. Antarctic Unmanned Aerial Systems (UAS) operator’s handbook. https://documents.ats.aq/ ATCM39/att/ATCM39_att011_e.pdf.
Cui X B, Liu J X, Tian Y X, et al. 2019. GIS-supported airfield selection near Zhongshan Station, East Antarctica, based on multi-mission remote sensing data. Mar Geod, 42(5): 422-446, doi: 10.1080/ 01490419.2019.1645770.
Cui X B, Wang T T, Sun B, et al. 2017. Chinese radioglaciological studies on the Antarctic ice sheet: progress and prospects. Adv Polar Sci, 28(3): 161-170, doi: 10.13679/j.advps.2017.3.00161.
Dammann D O, Eicken H, Mahoney A R, et al. 2018. Traversing sea ice—linking surface roughness and ice trafficability through SAR polarimetry and interferometry. IEEE J Sel Top Appl Earth Obs Remote Sens, 11(2): 416-433, doi: 10.1109/JSTARS.2017.2764961.
E D C, Wang Z M, Zhang S K. 2018. Progress in Chinese Antarctic geodetic remote sensing. Adv Polar Sci, 29(2): 78-86, doi: 10.13679/j. advps.2018.2.00078.
Florinsky I V, Bliakharskii D P. 2019. Detection of crevasses by geomorphometric treatment of data from unmanned aerial surveys. Remote Sens Lett, 10(4): 323-332, doi: 10.1080/2150704X.2018. 1552809.
Funaki M, Hirasawa N. 2008. Outline of a small unmanned aerial vehicle (Ant-Plane) designed for Antarctic research. Polar Sci, 2(2): 129-142, doi: 10.1016/j.polar.2008.05.002.
Gaffey C, Bhardwaj A. 2020. Applications of unmanned aerial vehicles in cryosphere: latest advances and prospects. Remote Sens, 12(6): 948-988, doi: 10.3390/rs12060948.
Giordan D, Manconi A, Tannant D D, et al. 2015. UAV: Low-cost remote sensing for high-resolution investigation of landslides. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). July 26–31, 2015, Milan, Italy. IEEE, 5344-5347. doi: 10.1109/IG ARSS.2015.7327042.
Goraj Z. 2014. A specialized UAV for surveillance in windy, turbulent environment of the Antarctic coast. Petersburg, Russia: Proceedings 29th Congress Int Council Aeronautical Sci.
Holland G J, Webster P J, Curry J A, et al. 2001. The aerosonde robotic aircraft: a new paradigm for environmental observations. Bull Amer Meteor Soc, 82(5): 889-901, doi: 10.1175/1520-0477(2001)082<0889: taraan>2.3.co;2.
Hossain M, Zhang Y, Yuan C. 2019. A survey on forest fire monitoring using unmanned aerial vehicles. Shanghai, China: 3rd International Symposium on Autonomous Systems (ISAS).
Hui F M, Li X Q, Zhao T C, et al. 2016. Semi-automatic mapping of tidal cracks in the fast ice region near Zhongshan Station in East Antarctica using Landsat-8 OLI imagery. Remote Sens, 8(3): 242-257, doi: 10.3390/rs8030242.
Hui F M, Zhao T C, Li X Q, et al. 2017. Satellite-based sea ice navigation for Prydz Bay, East Antarctica. Remote Sens, 9(6): 518-538, doi: 10.3390/rs9060518.
Ji M, Zhang B G, Zhang Y Y, et al. 2019. Sizing and trend analysis of penguin numbers in Antarctic from high resolution photography by unmanned aerial vehicles. J Beijing Norm Univ Nat Sci, 55(1): 25-35, doi: 10.16360/j.cnki.jbnuns.2019.01.004 (in Chinese with English abstract).
Jouvet G, Weidmann Y, Kneib M, et al. 2018. Short-lived ice speed-up and plume water flow captured by a VTOL UAV give insights into subglacial hydrological system of Bowdoin Glacier. Remote Sens Environ, 2018(217): 389-399, doi: 10.1016/j.rse.2018.08.027.
King D H, Wasley J, Ashcroft M B, et al. 2020. Semi-automated analysis of digital photographs for monitoring east Antarctic vegetation. Front Plant Sci, 11: 766-781, doi: 10.3389/fpls.2020.00766.
Leary D. 2017. Drones on ice: an assessment of the legal implications of the use of unmanned aerial vehicles in scientific research and by the tourist industry in Antarctica. Polar Rec, 53(4): 343-357, doi: 10.1017/s0032247417000262.
Leuschen C, Hale R, Keshmiri S, et al. 2014. UAS-based radar sounding of the polar ice sheets. IEEE Geosci Remote Sens Mag, 2(1): 8-17, doi: 10.1109/MGRS.2014.2306353.
Li L. 2019. No reported injuries after icebreaker’s collision with Antarctic iceberg. [2019-01-21]. http://www.chinadaily.com.cn/a/201901/21/ WS5c45b702a3106c65c34e5ac1.html.
Li T, Zhang B G, Cheng X, et al. 2019. Resolving fine-scale surface features on polar sea ice: A first assessment of UAS photogrammetry without ground control. Remote Sens, 11(7): 784-806, doi: 10.3390/rs11070784.
Li T, Zhang B G, Cheng X, et al. 2020a. Applications of the UAVs in the Antarctic scientific research: progress and prospect. Geomatics Info Sci Wuhan University, doi: 10.13203/j.whugis20200098 (in Chinese with English abstract).
Li T, Zhang B G, Xiao W, et al. 2020b. UAV-based photogrammetry and LiDAR for the Characterization of ice morphology evolution. IEEE J Sel Top Appl Earth Obs Remote Sens, 13: 4188-4199, doi: 10.1109/jstars.2020.3010069.
Markov A, Polyakov S, Sun B, et al. 2019. The conditions of the formation and existence of “blue ice areas” in the ice flow transition region from the Antarctic ice sheet to the Amery Ice Shelf in the Larsemann Hills area. Polar Sci, 22: 100478-100488, doi: 10.1016/j.polar.2019.08.004.
McGill P R, Reisenbichler K R, Etchemendy S A, et al. 2011. Aerial surveys and tagging of free-drifting icebergs using an unmanned aerial vehicle (UAV). Deep Sea Res Part II: Top Stud Oceanogr, 58(11-12): 1318-1326, doi: 10.1016/j.dsr2.2010.11.007.
Miranda V, Pina P, Heleno S, et al. 2020. Monitoring recent changes of vegetation in Fildes Peninsula (King George Island, Antarctica) through satellite imagery guided by UAV surveys. Sci Total Environ, 704: 135295-135305, doi: 10.1016/j.scitotenv.2019.135295.
Pereira F, Marques J S, Heleno S, et al. 2020. Detection and delineation of sorted stone circles in Antarctica. Remote Sens, 12(1): 160-174, doi: 10.3390/rs12010160.
Rennie J. 2015. Aurora Australis uses drone technology to navigate sea ice. [2005-12-23]. http://www.antarctica.gov.au/news/2015/aurora- australis-uses-drone-technology-to-navigate-sea-ice.
Rümmler M C, Mustafa O, Maercker J, et al. 2018. Sensitivity of Adélie and Gentoo penguins to various flight activities of a micro UAV. Polar Biol, 41(12): 2481-2493, doi: 10.1007/s00300-018-2385-3.
Sanderson K. 2008. Unmanned craft chart the Antarctic winter. (2008-03-18). https://www.nature.com/articles/news.2008.680.
Sun Q Z, Vihma T, Jonassen M O, et al. 2020. Impact of assimilation of radiosonde and UAV observations from the Southern Ocean in the Polar WRF Model. Adv Atmos Sci, 37(5): 441-454, doi: 10.1007/ s00376-020-9213-8.
Sun Q Z, Zhang L, Meng S, et al. 2018. Meteorological observations and weather forecasting services of the CHINARE. Adv Polar Sci, 29(4): 291-299, doi: 10.13679/j.advps.2018.4.00291.
Westoby M J, Dunning S A, Woodward J, et al. 2016. Interannual surface evolution of an Antarctic blue-ice moraine using multi-temporal DEMs. Earth Surf Dynam, 4(2): 515-529, doi:10.5194/ esurf-4-515-2016.
Whillans I M, Merry C J. 2001. Analysis of a shear zone where a tractor fell into a crevasse, western side of the Ross Ice Shelf, Antarctica. Cold Reg Sci Technol, 33(1): 1-17, doi: 10.1016/S0165-232X(01) 00024-6.
Xu Z H, Wu L X, Zhang Z X. 2018. Use of active learning for earthquake damage mapping from UAV photogrammetric point clouds. Int J Remote Sens, 39(15-16): 5568-5595, doi: 10.1080/01431161.2018. 1466083.
Yuan X H, Qiao G, Li Y J, et al. 2020. Modelling of glacier and ice sheet micro-topography based on unmanned aerial vehicle data, Antarctica. Int Arch Photogramm Remote Sens Spatial Inf Sci, XLIII-B3-2020: 919-923. 2020 XXIV ISPRS Congress (2020 edition), doi: 10.5194/isprs-archives-xliii-b3-2020-919-2020.
Zhai M X, Li X Q, Hui F M, et al. 2015. Sea-ice conditions in the Adélie Depression, Antarctica, during besetment of the icebreaker RV Xuelong. Ann Glaciol, 56(69): 160-166, doi: 10.3189/2015aog69a007.